The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo.

نویسندگان

  • O F Bueno
  • L J De Windt
  • H W Lim
  • K M Tymitz
  • S A Witt
  • T R Kimball
  • J D Molkentin
چکیده

Mitogen-activated protein kinase (MAPK) signaling pathways are important regulators of cell growth, proliferation, and stress responsiveness. A family of dual-specificity MAP kinase phosphatases (MKPs) act as critical counteracting factors that directly regulate the magnitude and duration of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) activation. Here we show that constitutive expression of MKP-1 in cultured primary cardiomyocytes using adenovirus-mediated gene transfer blocked the activation of p38, JNK1/2, and ERK1/2 and prevented agonist-induced hypertrophy. Transgenic mice expressing physiological levels of MKP-1 in the heart showed (1) no activation of p38, JNK1/2, or ERK1/2; (2) diminished developmental myocardial growth; and (3) attenuated hypertrophy in response to aortic banding and catecholamine infusion. These results provide further evidence implicating MAPK signaling factors as obligate regulators of cardiac growth and hypertrophy and demonstrate the importance of dual-specificity phosphatases as counterbalancing regulatory factors in the heart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The benzo[c]phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogen-activated protein kinase phosphatase-1.

Mitogen-activated protein kinase phosphatase-1 (MKP-1) is a dual specificity phosphatase that is overexpressed in many human tumors and can protect cells from apoptosis caused by DNA-damaging agents or cellular stress. Small molecule inhibitors of MKP-1 have not been reported, in part because of the lack of structural guidance for inhibitor design and definitive assays for MKP-1 inhibition in i...

متن کامل

Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo.

MAPK signaling pathways function as critical regulators of cellular differentiation, proliferation, stress responsiveness, and apoptosis. One branch of the MAPK signaling pathway that culminates in ERK1/2 activation is hypothesized to regulate the growth and adaptation of the heart to both physiologic and pathologic stimuli, given its known activation in response to virtually every stress- and ...

متن کامل

CD40-modulated dual-specificity phosphatases MAPK phosphatase (MKP)-1 and MKP-3 reciprocally regulate Leishmania major infection.

The macrophage-expressed CD40 regulates immune responses to Leishmania major infection by reciprocal signaling through p38 MAPK and ERK1/2. CD40-induced IL-10 or IL-12 plays crucial roles in the promotion or protection from L. major infection, respectively. Because p38 MAPK and ERK1/2 are dephosphorylated by dual-specificity MAPK phosphatases (MKPs), we tested the role of CD40 in the regulation...

متن کامل

CAMP-dependent protein kinase enhances CYP17 transcription via MKP-1 activation in H295R human adrenocortical cells.

Steroid hormone biosynthesis in the adrenal cortex is controlled by adrenocorticotropin (ACTH), which increases intracellular cAMP, resulting in the activation of cAMP-dependent protein kinase(PKA) and subsequent increase in steroidogenic gene transcription. We have found that a dual-specificity phosphatase is essential for conveying ACTH/cAMP-stimulated transcription of several steroidogenic g...

متن کامل

Isolation of the human genes encoding the pyst1 and Pyst2 phosphatases: characterisation of Pyst2 as a cytosolic dual-specificity MAP kinase phosphatase and its catalytic activation by both MAP and SAP kinases.

We have isolated the human genes encoding the Pyst1 (MKP-3) and Pyst2 (MKP-X) MAP kinase phosphatases. Both genes consist of three exons interrupted by two introns and lack an intron which is conserved in all the other members of this gene family characterised to date. This reinforces the conclusion that Pyst1 and Pyst2 are members of a distinct and structurally homologous subfamily of dual-spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 88 1  شماره 

صفحات  -

تاریخ انتشار 2001